ANNO II.

$$
\begin{aligned}
& \text { NOATACAIAR I O } \\
& \text { DEEL } \\
& \text { CIRCOLO ASTROFILI VERONESI } \\
& =====
\end{aligned}
$$

$$
\text { AGOSTO } 1955
$$

N 0 T I Z I A R I 0D E I
CIRCOLO ASTROFIIIVERONESIANNO IT. N. 8.
$\begin{array}{llllllll}S & O & M & M & A & R & I & 0\end{array}$
No Eichenit : - Giacomo Leoparii e I'Astiononia.G. Rugéiexi :- I'osservazione del pianeta Giove.
A cura di C. Recla: - Fenomeni del mese.

- I Pianeti durante il mese.
- Pasi lunari- Occultazioni lunariA cusa di B. Och : - Attivita del CircoloVarie.

Il dolore umano, inteso non nel senso di negazjone dei valori universali, ma nella insufficienza dell'vomo a comprendere la natu ra e ad essa aderire, è il motivo essenziale che caratterizza tutta la vastissima opera del grande Recanatese. Non pessimismo ad oltran za, quindi, non sterile negazione, nel suo pensiero poetico e filosofico, ma ribellione intima contro tale insufficienza, che genera nel suo animo il tormentoso contrasto tra ragione e natura; quella limitata, mutevole, incoerente; questa invece partecipe del mistero dell'Universo creato, regolato da leggi inflessibili, immutabili, ve re. Come avrebbe, quindi, potuto, un animo sensibile come il Suo, virere nel consorzio degli uomini, asserviti alla freda ragione, do minati dalla ipocrisia e dal formalismo di leggi e convenzioni, non alzare gli occhi al Cielo, e constderare questo, non soltanto come Tonte di ispirazione poetica, ma soprattutto come elemento di indagine - anche se permeato di poesia - per maggiormente convincersi della infinita meschinità del nostro pianeta, che tanto orgogliosi rende questi piccoli esseri che si chiamano uomini? Poteva mai I'Astronomia, che da Lui stesso è definita "la più sublime, la più nobile tra le fisiche scienze" rimanere estranea all'occhio del Suo spirito, così assetato di verità e di luce? No, certamente,

Di concetti inerenti all'astronomia, filosofici, storici, scienti fici, è piena la Sua opera, concetti che pongono in evidenza lo svì luppo ed il progresso nel corso dei secoli, della scienza degli Astri, senza mancare di entrare sovente nel merito scientifico di talune questioni di una certa complessità.

Impresa ardua sarebbe quella di voler trattare a fondo I'influen za che I'Astronomia ebbe nell'animo del Leopardi. Scopo di questi apprnti è quello di notare come tale scienza, malgrado faccia capo alla matematice ed alla aridità dei calcoli e delle cifre, può, nel I'animo dol Genio, ben aderire all'arte delle Muse, pojcike ogni volo del pensiero umano verso le alte vette del sapere e della conoscenza, è alta pocsia, che pone l'uomo di fronte alla realtà incommensurabile delle cose immensamente più grandi di lui. Non furona forse poeti Copernico, Calileo, Newton, Cassini? Chi più di loro sentì nell.'animo la poesia ed il fascino delle nuove conquiste e del prezioso tesoro che avrebbero tramandato alle generazioni future?

Giacomo Leopardi, nel 1813, e cioè alla età di soli 15 anni,scris se la "Storia dell'Astronomia dalla sua origine fino all'anno 1811". Un apera veramente poderosa e ponderosa, che ci lascia profondamente
riflettere, se si considera la formidabile ervdizione dell'Autore, in rapporto alla Sua giovanissima eta. L'opera esordisce testualmen te così: "La più sublime, la più nobile tra le físiche scienze el la è senza dubbio l'Astronomia. L'romo si innalza per mezzo di essa come al di sopra di sè medesimo e giunge a conoscere la causa dei fenomeni più straordinari. Una così utile scienza, dopo essere stata per molto tempo soggetta alle tenebre dellerrore ed alle follie degli antichi filosofi, venne fimalmente nei posterima socoli illustra ta a scgmo, che moritamente può dirsi, poche essere quelle scienze che ad un tal grado di perfezione sieno ancor givate".

Essa, oltre l'introduzione, è composta di quattro capitoli, che si identificano nelle quattro grandi epoche della Storia dell'Astronomia, e procisamente:
$I \quad=$ Dalle origini fino alla nascita di Talete.
II = Daila nascita di Talete a quella di Tolomeo.
III = Dalla nascita di Tolomeo a quella di Copenico.
IV = Dalla nascita di Copernico fino aila cometa dell'anno 1811
F' aggiunto un quinto capitolo che tratta dei progressi fatti dalla Astronomia, nel quale l'Autore, riferendosi a quanto esposto nei quattro capitoli precedenti, esamina a parte i progrossi della Scienza degli Astri, allo scopo di meglio conoscere lo sviluppo delle nostre cognizioni ed il carattere dello spirito umano.

Ma quello che maggiormente stupisce, e ci rende addirittura attoniti, è, oltre la ammirevole organiciti con la quale gili argomenti vengono trattati, l'enorme numero di citazioni storiche, scientifiche, letterarie, dalle quali I^{\prime} opera è costellata. Si tratta di cir ca dietimila citazioni di nomi, che vanno dai più grandi luminari della Scienza a quelli di modesti cultori; 0 le citazioni di nomi ed evonti di naggiore importanza, sono documentate da riferimenti a te sti, documenti, scritti in genere, di qualsiasi epoca ($n^{\circ} 228$ Autori consultaiti, dei quali, i maggiori, con un rilevante numero di opete)

Come nel "Saggio sugli errori popolari degli antichi" cosi anche nella "Storia dell'Astronomia", specialmente nei primi tre capi toli, la materia è permeata di poesia, che, come sempre, trae origine dalla forte immagirazione dello Scrittore, il quale trova compiacenza nel rievocare, e nel rendere attuali nel suo spirito, le credenze antiche, da quelle Caldee ed Egiziane a quelle Elleniche. Esse, per Lui, rappresentano l'infanzia della umanità, la quale, come l'infanzia dell'uomo, lascia tracce profonde ed indelebili nell'animo, non scevre dal fascino nostalgico delle cose che furono e che mai pili ritorneranno.

Le nuove teorie Tolemaiche e Copernicane, che rimuovono le intelli
genze dalle erronee credenze, pur rappresentando il divenire e l'evolversi dello spirito umano, nulla tolgono alla poesia ed alla bellezza di quelle.

Ma le nuove conquiste scientifiche esaltano il Poeta. Riferendosi al grande Galileo, cosi scrive:
"I'anno 1564 sarè sempre memorabile presso gli Astronomi per la "nascita accaduta in esso dell'immortale Galileo Galilei, cele"berrimo astronomo e matematico. Egli fu che pose i fondamenti "della scienza del moto: scienza i di cui misteri ci son sem"pre presenti, senza che dèstino in noi alcuna meraviglia.
"Noi nasciamo e viviamo col moto, i suoi fenomeni si cangiano, "si succedono, si moltiplicano di continuo intorno a noi; ma I'abj "tudine di vederli fa sì che da noi non vengano apprezzati.
"Galileo bandi i moti naturali e violenti, i rettilinei e i "circolari, ed ogni ridicola distinzione di corpi leggeri e pe"santi. Mostrò che un corpo, spinto in due diversc direzioni da "due forze, segue una direzione intermedia, e so le direzioni so "no lati di un quadrato, segue la diagonale".
Parlando di Giovanni Keplero, lo definisce "Padre dell'Astronomia" e dice:
"Qual danno che Keplero non sia vissuto dei secoli! Nato con un "ingeno straordinario; con un genio brillante, con un talento rifor"matore, non avrcbbe mai cessato di essere utile all'uman genere. Ma "egli aveva quasi appena terminate le sue Tavole, che pago il tribu "to fatale alla natura. Keplero meditando sulla irregolarita del mo"to di Marte, scopri quelle famose leggi del movimento dei pianeti, "che han reso immortale il suo nome; e sono: 10) le aree astrono"miche percorse dai pianeti sono come i tempi da essi impiegati a "percorrerle; 2°) I Quadrati dei tempi periodici dei pianeti, che "girano intorno ad un centro comunc, sono come i cubi delle lor di"stanze dal centro......"

Confuta alcune teorle di Descartes, ma esalta la dottrina di Giandomenico Cassini, il quale, come Galileo, mori cieco. Con un richiamo poetico all'antico, il Leopardi dice che questi due Grandi possono paragonarsi al veggente Tiresia, che divenne cieco per aver veduto alcuni segreti degli Dei.

Ia teoria di Newton è esposta con la massima ampiezza e chiarezza, e sembra incredibile che il Leopardi, il quale in alcune pagine dello "Zibaldone" si professa nemico della matematica, dichiarandola assolutamente "opposta al piacere", nella trattazione di que dta teoria si addentri in questioni fisico-matematiche con eccezio-
nale perizia e competenza.
Con la scoperta della cometa del 1811, il Leopardi pone fine alla Sua "Storia dell'Astronomia". Ci piace riportare le parole con cui termina il Suo straordinario lavoro, parole che rispecchiano la nobiltà di un animo, il quale, pur dimostrando pessimismo e sfiducia verso i Suoi contemporanei, si inchina riverente davanti alle ombre di quei grandi, che tanto contribuirono alla elevazione dello spirito umano. :
"Qui pongo fine alla Storia dell'Astronomia. Plinio lamentossi "un tempo della negligenza degli antichi nello scrivere la storia "dei progressi dello spirito umano nella scienza degli Astri. Ella "è, dic'egli, una vera depravazione di spirito, che si ami riempir "le carte di narrazioni di guerre, di stragi e di delitti, e non "si voglia poi tramandare alla posterita nelle storie i benefici "di coloro, che han posta ogni cura nell'illustrare una scienza "cosi utile. Nosso da questo sì giusto rimprovero, intrapresi di "scrivere la Storia dell'Astronomia, della quale son giunto al "compimento. Se di cotesto mio lavoro non curast la presente età, "possano almeno sapermenc grado le ombro saore di coloro che con "tribuirono all'avanzamento della Scienza degli Astri".

Il rilovamento dei dettagli \cdot
Bseguito il tirocinio opportuno onde trovare gli ingrandimenti da impiegarsi in ogni situazione, l'osservatore potrà cominciare a registrare cio che vede. E qui comincia il suo vero lavoro. Se il suo ocorio è sensibile, l'ingrandimento scelto è opportuno, lo stru mento è ben regolato e la sera è calma, Giove si presenterà come un attraente spettacolo, con le sue bande ricchie di nuclei e sfumature e le suc delicate tonalitè. Occorre di questo spettacolo serbare un ricordo adatto allo studio; o meglio occorre ricavarne dei lati che possano servire a un'ulteriore elaborazione.

Qui cade un avvertjmento diretto a coloro che non hanno per natu ra una spiccata abilità per il disegno. Sia chiaro che non occorre
 re di uno strumento sia in grado di delineare Giove in tutti 1 suoi toni in modo da ricavarne un quadrotto vero e proprio. Tale possi-
bilita è molto rara e se fosse assolutamente richiesta la schiera degli ossexvatori del pianeta sarebbe inmediatamente resa molto più sparuta di quella che ofegi non sia. Li unica cosa richiesta è invece di rilevare cio che si osserva con precisione, cercando di raccogliere tutto il possibile ma senza preoccuparsi se qualche dettaglio secondario sfugge.

A rigor di logica si potrebbe dire che non è nemneno necessario prendere schizzi; in caso di incapacità assoluta nel disegno, essi potrebbero essere opportunamente sostituiti da note e da stime, come sarà meglio spiegato fra poco. In tal modo si può fare sempre un lavoro utilissimo. Tuttavia è da supporre che tutti siano in grado di schizzare, anche in modo grossolano, cid che vedono. Sarà quindi bone che gli schizzi vengano eseguiti il più sovente possibile; l'im piego poi delle stime che descriveremo dara ad essi quel completamento che li renderà documenti di lavoro.

Sarebbe opportuno disegnare su carta bianca; ma ragioni di praticità ci inducono ad usare una carta quadrettata. Si preparino quindi dei fogli di una carta avente una quadrettatura rigorosamente identica a quella del registro di osservazione (a meno che non si preferisca disegnare direttamente su quest'ultimo). Si preparino poi su questi fogli dei dischi adatti a contenere cid che si osserverà.
 agevole; ma Giove ha un notevole schiacciamento polare e bisogna quindi disegnare dello ellissi il meglio possibile. Siccome il trac ciamento di un'ellisse, coi metodi ben noti in geometria, è una faccenda sempre un poco laboriosa, la si puo eseguire una volta per tut te. Si prende un cartoncino robusto, meglio ancora un foglio di presspan piuttosto sottile; vi si tracci un'ellisse accuratamente (Giove ha uno schiacciamento polare di 1/15), poi, con una lametta per barba, si asporti la sagoma del pianeta. Si sarà ottenuto così un "modello" standard; basta appoggiarlo sui fogli e sul registro d'osservazione per tracciare facilmente, passandovi la matita aoll'interno, tutti i dischi che si vogliono.

I'impiego della carta quadrettata uguale per gli schizzi e per i disegni definitivi offre un vantaggio evidente. Lo schizzo può essere riportato sul registro d'osservazionc, quadretto per quadretto, mantenerdo rigorosamente inalterate le proporzioni; ciò che è ossen ziale. Pud anche, volendo, essere ingrandito comodamente, in quanto la quadrettatura funziona agevolmente da pantografo.

Circa le dimensioni dei dischi non è opportuno esagerarli, ma nemmeno farli troppo piccoli. Disponendo di uno strumento di $20-25 \mathrm{~cm}$., una dimensione di 5-6 centimetri di diametro va benissimo. Ia 'pregtam razione di un tracciadischi standard rende i disegni tutti comparabili direttamento tra di loro, con grandissimo vantaggio.

Preparati i fogli con i dischi, si passi allo strumento. Non si
cominci immediatamente a disegnare appena avvicinato l'occhio all'oculare; si lascino trascorrere alcuini minuti finchè non ci si è resi un pol padroni di cio che il telescopio mostra sul pianeta. Si tracci allora lo schema generale delle bande, curando al massimo le proporzioni; poi si collochino i dettagli minuti. Ci si preoccu pi. soprattutto di collocare con la massima rapidita i dettagli visibili sul meridiano centrale, annotando l'ora esatta (è sufficien te che l'orologio sia regolato sui segnoli orario della radio). Ciò perchè al meridiano i dettagli scorrono velocemente. In un minuto si ha uno spostamento di 0,6 gradi giovigrafici. e basta attardarsi un po' per accorgersi che un dettaglio, che all'inizio del disegno figurava al meridiano, in seguito non lo à più. Siccome non è fossibile celineare certe forme con la rapidità richiesta, si abbozzino prima in modo grossolano, unicamente per fissarne la posirione piecisa; si procedera poi con più calma alla finitura. Si proceda, per quest'ultima fase, dettaglio per dettaglio. Quando la attenzione è fissa su una macchia, non ci si distragga finchè non la si è ben delineata, anche se momenti di calma atmosferica rivelano una folla di particolari poco discosti e invitano a volgere l'occhio ad essi. Circa le proporzioni si cerchi di aiutarci trac ciando delle forme geometriche ideali che danno alla mente un ri= forimento fer tracciare poi sulla carta. Certe macchie sparse si possoro sempre idealmente collegare in triangoli contigui, θ il sam persi addestrare in questa triangolazione mentale sarà un aiuto preziosissimo all'ottenimento di aisegni notevolmente precisi.

I तisegni vanno naturalmente completati da note recanti tutto oio che l'osservatore ha potuto notare. Nulla di ciò cho si è veduto deve ossere trascurato. Anche un'annotazione irsignificante può di vertare preziosa in sede di elaborazione dei risultati. Si notino aiche: I'ingranaitmento usato, l'zpertura e I'eventuale diaframma, le turoolarza dell'immagine e la luminosità dell'jmmagino. Queste ultime si possono indicare con numeri, in base a scale di cui le seguenti sono un escmpio.

- Turbolinza: 1 = immagine eccezionalmente calma; 5 = immagine talmente agitata da pemettere l'ottenimento di un disegno appena utilizzabile. E^{\prime} facile dare i numeri adatti agli stadi intermedi.
- Iuminosità: 1 = immegine eccezionalmente brillante; 5 = immagine tanto fosca da~permettere appena la visione dei dettagli principali. Si intercalino gli stadi intermedi come sopra.

11. rilevamento delle longitudini. -

Fin qui si è trattato di fare di Giove una "pittura"; in questo paragrafo e in quelli successivi si tratterà invece di trasfor-
marlo in dati numerici. I più facili da ottenere di questi dati sono quelli relativi alle longitudini delle macchie noi due sistemi, e la cosa non richiede micrometri ma soltanto un po' di accuratezza e di pazienza.

I3. rilevamento della longitudine di un dettaglio consiste essenzialnente nel determinare il momento in cui questo dettaglio passa al meridiano. Ia cosa è più agevole di quanto non si possa credere, ed è resa così dalla struttura a bande e a zone del pieneta. Quando un dettaglio che è incluso in una certa banda si trova al meridiano, i due tronchi della banda di qua e di là dal dettaglio appariranno esattamente uguali; se il dettaglio scarta del meridiano appena di un grado o dve l'nochio noterà subito la differenza. Se si nota quindi quaZche macohia un po' a destra del meridicno (nell'immagine rovesciata) ci si metta alloculare con pazionza; quando la si vedrà nelJa condizione sudetta, si prenda nota dell'ora e del minuto. E' tut to qui. Non occorre preoccuparsi dei secondi. L'orologio sia regolato oni segnali orario e se anche in un giorno avanza o ritarda di qualche secondo non ci se ne preoccupi, purchè la regclazione sia fatta Eiornalmente. So l'occhio fosse allenatissimo e áctato del massimo senso delle proporzioni, si potrebbe arrivare in tal modo all'approssi mazione di $0^{\circ}, 6$; comunemente l'approssimazione è un pol più larga (ic o anche 2°) ma più che sufficiente in sede di. riduzjone dei risultati, purchè per una stessa macchia si siano ottenuti molti passagsi.

Ottenuti lora e il minuto di passaggio, è elementare ricavare la longitudias del dettaglio, in uno dei due sistemi a seconda della sua posizicne sul disco. E' comodo allora impiegare le grandi effemeridi che danno la posizione del meridiano centrale per ogni giorno, alle ore OT.U., in ambedue i sistemi. Le effemeridi comuni di cui dispone l'astrofilo non sono così complete perchè danno questi dati per certi gionni soltanto (per esempio quelle delliAnnario del COELUM ogni 14 gioni); è necessario allora ottenere i dati intermedi per interpolazione.

Ja tarella che segue, tolta dall' "Handbook" della Inctish Astrono mical Association, permette di ricavare dalle effemeridi giornaliere alle ore $0 T$. U. la longitudine di un dettaglio per qualunque ora e minuto del giorno, con una semplice difforenza (si ricordi che oh T.U. corrispondono a th T.M.E.C.).
Tabella dei cambiamenti di longitudine in tempo medio.
(morimento del meridiano centrale nei due sistemi).

minuti	S. I	S. II	ore	S.I.	S.II
1	00,6	00,6	1	360,6	360,3
2	1.2	1.2	2	73.2	72.5

	$-95-$					
minuti	S.I	S. II	ore	S. I	S. II	
3	1.8	1.8	3	109.7	108.9	
4	2.4	2.4	4	1.16 .3	145.1	
5	3.0	3.0	5	182.9	181.3	
6	3.7	3.6	6	219.5	217.6	
7	4.3	4.2	7	256.1	253.8	
8	4.9	4.8	8	292.7	290.1	
9	5.5	5.4	9	329.2	326.4	
10	6.1	6.0	10	5.8	2.6	
20	12.2	12.1				
30	18.3	18.1				
40	24.4	14.2				
50	30.5	30.2				

Pud avvenire talvolta che si sia costretti a interrompere l'osservazicne prima dell'arrivo di un dettaglio al meridiano centrale; oppure che al suo inizio si veda che una macchia importante ha gia oltrepassato $i=m e r i d i a n o$. In questi casi un disegno ben proporzionato puo essere utile per ricavare dei dati complementari a quelli ricavati dai passaggi. Si misurino allora sul disegno la distanza della macchia dal meridiano centrale in millimetri e il segmento che dal meridiano centrale va al bordo del disco includendo la macchia; si faccia il rapporto fra le due misure e si legga su una tavola dei seni l'angolo corrispondente al risultato. Sottraendo o aggiungendo il valore angolare alla longitudine del meridiano centrale ricavata dalle offomeridi si ha la longitudine del dettaglio. Se di queste misure se ne fanno molto, il loro valore pud essere notevole; secondo il. FOURNIER una loro media può corrispondere a una rigorosa misura micrometrica. Naturalmente occorre allora dare un peso ai dati, a seconda della distanza dal maridiano. Si potrà, per esempio, dare un peso 1 al valore cttenuto se la macchia è prossima al bordo e dargli invece un peso 5 se la macchia è a pochi gradi del meridiano, usando opportunamente i pesi intermedi.
(continua)

THNGMEN DEL MESE DI AGOSTO 1955

I pianeti durante il mese di agosto 1955

Wutte le indicazioni di tempo sono riferite al T.M.E.C.
MERCURIO: passa dalla costellazione del Cancro a quella del Leone ed è invisibile.

VENEEE : prima nel Cancro, poi nel Leonc, si perde nei bagliori dell'autora.

MARTE : si trova nel Leone, ed è inosservabile, passa in congiun

zione col sole il 17

GIOVE : SATURNO:
nel Cancro, è invisibile, in congiunzione col sole il 4 nella Bilancia, visibile la sera, tranonta il 17 alle 21,58, ha un diametro polare apis rente di $14^{\prime \prime}, 8$ con gli anelli - asse maggiore di $38^{\prime \prime}$, asse minore $+13^{\prime \prime}$.
URANO : nel Cancro, appare visibile per poco il mattino, sorge il giorno 29 a 1 h 48 m .
NETTUMO: nella Vergine, scompare nella luce crepuscolare.
' Primo querto
Luna piera
Ultimo quarto
Luna Nuova

FASI IUNARI
25 a $8^{h} 51^{m}$
2 a 19 h 30 m
11 a 2 h 33 m
17 a 19 h 58 m .

FENONENI CEIESTI INTERESSANTI OSSERVABIII DURANTE II MESE DI \triangle GOSTO 1955
(Da Eternkalender 1955 - Gesellschaft fur Natur u. Technike).

$\underset{\mid}{\substack{\text { Giorno } \\ \hline}}$	4	7 h		Giove in congiunzione col Sole.
	5	Oh		Mercurio in congiunzione con Giove a +10101
	5	18h		Mercurio in congiunzione superiore col sole
	8	5 h		Mercurio in congiunzione con Marte a $+0^{\circ} 3^{\prime \prime}$
	11	18 h		Vonere in congiunzione con Giove a +0030'
	17	4 h		Marte in congiunzione con il Sole.
	4			Giove in congiunzione con la luna a + $^{\circ} 43^{\prime}$
	$\because 7$			Venere in congiunzione con la luna a+50461
	43	Oh		Marte in congiunzione con la luna a $\mathbf{5}^{\circ} 56^{\prime}$
	19			Merciurjo in congiunzione con la luna a $+6^{\circ} 40$
	20	7 h		Plutone in congiunzione con il Solc.
	24.	Oh		Venere in congiunzione con Marte a +00111
	2.4			Saturno in congiunzione con la luna a + $^{\circ} 26^{\prime}$

Giorno

6	chi Aqr	$5^{\mathrm{m}} .3$	E.	$17^{\mathrm{d}} .6$	1 H	23 m
7	fi Psc	6.4	E.	$18^{\mathrm{d}} .6$	1 h	49 m
7	chi Psc	4.9	E.	18.6	2 h	$6 \mathrm{~m}, 5$
29	57 Sgr	6.0	I.	12.1	22 h	58 mn

ATIIVITA OEI CIRCOLO

La balla serie degli istrumenti in dotazione dei nostri associati si e arrichita di un nuovo Telescopio costruito interamente (parti ottiche comprese) dal dott. B. Och.

I'apertura e la lunghezza focale del nuovo istrumento sono risyettivanente di mm.l70e1.241 ($D / f=1: 7,3$). La costruzione è stata realiszata seguendo, in linea generale, i principi e la tecnica esposti nel bel volumetto del Texerear: "La construction du Télescone d'amateur" (Ed. S.A.F. Paris) e la resa dell'istrumento si e dimostrata ottima sotto ogni punto di vista.

Abbiano già informato i lettori che nel convegno pronussu dai colleghi vicentini il giorno 12 dello scorso mese di giugno, numerosi convenuti hanno espresso il desiderio che il Notiziario pubblicasse un elenco degli astrofili veneti e degli aderenti al nostro COcolu con i rispettivi indirizzi e ciò per favorire i contatti e gli scombi di idee fra i vari gruppi delle diverse città. Ci sou siamo fin d'ora delle eventuali involontarie omissioni e preghiamo cortesemente i lettori di volerci segnalare dalle varie citta quei nominativi di astrofili che la nostra redazione finora non conosce. Elenco Astrofili Veneti:

Albarelli Bruno avqogato
Anfreatta Sergio
Antico F.sco
Balan Don Augusto, Sacerdote
Beretita Giuseppe
Bertola Francesco
Bichclli Michele Rag.
Eongiovanni Ernesto dott.rag.
Bosi Giorgio prof.
Botter Guido prof.

- Verona C.so Vitt. Emanuele, 127
- Treviso Via Riccati,80
- S.Anastasio di Cessalto (TV)
- Negrisia di Ronte di Piave (TV)
- Vicenza - Via Calderari,6
- Vicenza - Via G.Capparozzo,16
- Verona - Via XX settembre,101
- Bergamo - Via Grismondi,13
- Verona - Via Rovereto,13
- Treviso - Viale Olivi

Boscolo Giovanni prof.
Bravo rag.Gino
Brugnoli dott.Angelo
Caliumi Ferdinando brigadicre
Cariolato Iuigi geom.
Cavalleri Augusto dott:
Chiereghin Erminio
Chincarini dott.Ludovico
Colombo prof.Paolo
Corazza Emilio ing.
Crutzen Giovanni
Daberto Don Luigi
Dal Lago dott. Elio
Dall'Armi ing.Gio Batta
Dal Moro Iuciano Capitano
Disertori rag.Bruno
Dubovizza Aldo
Fagherazzi Don Giosuè
Fiocco Giacomo P.I.
Folco dott.Matteo
Formentini prof.Giovanni
Frizzi Maria
Ferretti-Torricelli prof.Angelo
Galvan geom.Giuseppe
Gastaldon Giovanni
Gastaldon Giulio
Giacomello mons. Candido
Gidoni Ettore
Grespan Stelio ing.
Landini Gaetano
Loi Pina
Mancini Fausta proff.
Marchesini Giacomo
Marcon prof.Virgilio
Marsiglio Sergio P.I.
Martini Don Pietro
Meneghini dott.Gino
Micheroux dott.Alberto
Michieletto Giovanni
Michieli Alberto
Mior ing.Augusto
Modun Capitano Giuseppe
Mora Astronomo Enzo

- Venezia - Calle Dell'Olio S.Stefano,2795
Treviso - Cassa di Risparmio S. Leonardo
- Vorona - Via Caprora,2/b
- Bologna - Comando Log.Guard.di Finanza.
- Malo (Vicenza)
- Vorona -S.Michele Extra - Via Unità d'Italia,31
- Sottonarina di Chioggia
- Venezia - Via Dorsoduro 847
- Verona - Lung. Campagnola,8
- Verona - Via Prato Santo,21
- Schio (Vicenza) Via P.P.Maraschin
- Parrocchia di Arabba (Belluno)
- Vicenza - Via S.Chiara,3
- Venezia - Accad. Palazzo Guarnara
- Verona - Via Mcdici,9
- Mestre - (VE) Via Cappuccina
- Murano - (VE) Via Vivarini,7
- Parrocchia di Frassenè (Belluno)
- Verona - Via Interrato Acqua morta,56
- Venezia - S.Croce, 1739
- Porcia di Pordenone (Udine)
- Verona - Lung. Panvinio,25
- Brescia, Specola Cidnea
- Fagarè - (Treviso)
- Treviso- Cartol.Silc F.Filodramm.
- Treviso - Porta SS.Quaranta
- Vicenza - Via S.Corona
- Verona - Via Ponte Nuovo, 5
- Castagnole di Paese (Treviso)
- Verona - Poste o Telegrafi
- Verona
- Strassoldo (Udine)
- Podernone (Udine) Via Molinari,24
- Zenson di Piave (Treviso)
- Verona - Via Arsonalc, 1
- Parrocchia di Fagarè (Treviso)
- Conselve (Padova)
- Roma, Corso Triczte, 65
- Mestre - Venczia - Via Cà Rossa,23
- Bologna - Via S.Giuliano,4
- Pordenone (Udine)
- Trieste - Guardiclla 1823
- Sequals - Udine -

Mostacci dott.Carlo Leonc
Neve Antonio
Neve Luigi
Nicoletti prof.Giustino
Och dott. Bruno
Paoletti Giuseppe
Perina rag.Remo
Pittini Aroldo
Recla geom.Carlo
Romanin Amerillis
Romano dott.Giuliano
Rozio Bruno P.I.
Ruggieri rag.Guido
Saccon Don Antonio
Salerni ing.Giovanni
Salin dott. Giacomo
Salmeri Nino
Salsilli ing. Vincenco
Sarzetto prof.ssa
Serafini Giacomo
Stegagno prof. Giuseppe
Stocco Mons.Giulio
Tassetto Antonio
Tedesco Alessandro
Tomelleri Dario
Tommasoli avv.Mario
Uberti Gio Batta
Valetti dott.
Vangelista Nello
Walter Riccardo
Zampicri Scrgio
Zampolli Sergio
Zanella Giovanni
Zamper Girolamo
Zanandrea Don prof.Giuseppe

- Soave (Vorona)
- Vonczia, Cannaregio 621
- Venezia, Cannaregio 621
- Viconza - Via Pescheria Vecchia, 33
- Verona - Io Traversa Quinzano,5
- S.Donà di Piave (Venezia)
- Verona - Vic.s.Silvestro,13
- Asiago Vicenza - Oss.Astrofisico
- Verona - Via Monte Ortigara 4/b
- Pordenonc (Udinc) P.le Chicsa, 14
- Treviso - Viale S.Francesco.
- Vorona - Via S.Vitale,Ig
- Nestre - Venezia pr.Soc.Filovie.
- Mreviso - Seminario Vescovile.
- Venezia-Lido - Via Lepanto,24
- Vicenza - Via Zara,5
- Palermo.
- Belluno - Via S.Lucano,10
- Treviso - Ist.Tecnico J.Riccati.
- Pordenone - Via Monte Peale,l3 Famiglia Savio.
- Verona - Via Gazzera, 23
- Treviso - Sominario Vescovile.
- Padova - Via B.Pellegrino,13
- Verona - Via Passo Buole, I
- Verona - Via Calatafini,9
- Verona P.ta S.Eufomia,5
- Verona - Vicoletto Sole,5
- Brescia - Specola Cidnea
- Vicenza - Via Ponte S.Paolo,14
- Brogliacco (Viconza) Magrè Vic.
- Montebelluna (Treviso)
- Verona - Interrato Acqua Morta,78
- Castagnole di Pacse (Treviso)
- Pordenone - Via Maggiore,54
- Lonigo (Vicenza) Convento P.Gesuiti
\qquad - \qquad
Per adesioni e comunicazioni: "Circolo Astrofili Veroncsi" - Via Monte Ortigara, 4/b - Verona -

La riproduzione degli articoli contenuti nel presente fascicolo è consentita purchè ne sia citata la fonte.

