$$
\text { N } O \quad \text { I } \quad I \quad Z \quad I \quad A \quad R \quad I \quad 0
$$

D E I

CIRCOLO ASTROFIIIVERONESI

$$
\text { MAGGIO } 1955
$$

$$
\begin{aligned}
& \text { IJ } 0 \quad \mathrm{~T} \quad \mathrm{I} \quad \mathrm{Z} \text { I } A \quad \mathrm{~A} \quad \mathrm{I} \\
& \text { D E I } \\
& \text { CIRCOLOASTROFIIIVERONESI }
\end{aligned}
$$

SOMMARIO

Guido Ruggeri :	- I'osservazione del pianeta Giove.
Emilio Bellavite:	- La visibilità atmosferica nelle osservazioni astronomiche.
Bruno 0ch :	- Ipotesi sull'origine del rilievo lunare.

A cura di C.Recla: | | - I pianeti durante il mese. |
| ---: | :--- |
| | - Fasi lunari |
| | - Fenomeni celesti interessanti. |
| | - Occultazioni lunari |
| | - Dalle riviste. |

A cura $\mathrm{B}_{\mathrm{E}} \mathrm{3}$. Och : - Attività del Ciroolo.

- Varie
- I'OSSERVAZIONE DIA PTANETA GIOVE (continuazione)

Ia geografja di Giove - Per il profano che mette occhio al telescopio, Giove è un astro "zebrato" e null'altro; chè, di primo acchito, non si pensa che quelle striscie rappresentino delle correnti permanenti nel:I'atmosfera dell'astro che ne definiscono la geografia. Volendo invecs prendere il pianeta come oggetto di studio è necessario familiarizzarsi con questa geografia e con la terminologia, del resto semplicissime ambedue.

Il più sommario degli esami mostra la regione equatoriele ocoupata äa una zona chiara; è questa la "Zona Equatoriale" o E. . . come I'abbre viano gli osservatori inglesi e americani. A nora e a sud della E. Z. due belle striscie vistosamente colorate fasciano il disco; sono rim sivetivamente la "Banda Equatoriale Nord" (N. E. B., in abbreviazione come sopra) e la "Banda Equatoriale Sud" (S.E.Bo) Qui converra apriro una parentesi. I'uso che si fa in Italia della terminologia inglese è stato princirtamnete diffuso dal Taffara con una nota pubblivata nel 1.929 nelle "Memorie della Società Astronomica Italiana" e in questi uitimi annt e stato seguito da chi scrive in varie pabblicarioni.

Trovo razinnale quest'uso per il semplice latto che la "British Astronomical Association", che I'ha lanciato, raccoglie, si plò dire, la magglor parte di osservazioni del pianeta che si fanno in tatto il mondo. E" del resto, sostanzialmente, La stessa teminologia usata nei paesi a lingua tedesca. Purtroppu una unificazione manoa e la Francia (vedi "I'Annuaire Flammarion") continua ad usare denominazioni analoghe, ma con una variante che si presta ad equivoci; per i francesi le "Bande Equatoriali Norde Sud" diventano le "Bandes Tropicales Nord et Sud".

Da notare che per gli altri dettagli l'acordo è generale. Sarebbe auspicabjue che in una delle prossime riunioni l'Unione Astronomica In ternazionaje unificasse questa nomenolatura come ha già fatto per que Ie della Sane e di Marte; siccome perd questo non è ancora avvenuto,occorre soobinece secondo un criterio possibilmente razionale, come ora si è cercato di fare.

Chiusa cresta lunga parentesi, non ci resta che riprendere I'esame $^{\prime}$ del pianeta. Proseguendo verso i poli, alle Bande Equatoriali troviamo far segui to due belle regioni chiare, alle quali spettano i nomi di "Zona Tropicule Nord" (N.Tr.Z.) e "Zona Tropicale Sud" (S.Tr.Z.); Ie due striscie scure che le đimitano, sempre allontanandosi dall'Rquato re, ธon 1a 'Banda TempcretaNord" (N.T.B.) e la "Banda TemperataSud" (S.T.E.) Eiù a nord e più a sudi dettagli si fanno meno nitidi; si vedono atrisoie sottili variabili, alternate a regioni chiare, finchè
si raggiungono le uniformi ombre delle regioni polari. Siccome però le striscie evanescenti rappresentano anch'esse delle correnti vere e pro prie nell'atmosfera del pianeta, talora inattive od obiiterate ma non per questo dissolte, la nomenclatura prosegue fino ai poli nel modo sem guente:

- Zona Temperata Nord (N.T.Z. - Zona Temperada Sud (S.T.Z.)
- Banda Tomperata Nord Nord (N.N.T.B.) - Banda Temperata Sud Sud (is S.TR
- Zona Temperata Nord Nord (N.N. T.Z.) - Zona Temperata Sud Sud (S.S.T.
- Banda Temp. Nord Nord Nord (N. N.N.T.B.) - Banda Temp. Sud Sud Sud
(S.S.S.T.B,)
- Regioni Polari Nord (N.P.R.) - Regioni Polari Sud (S.P.R.).

Come si vede è una nomenclatura sintetioa, ben più facile da ricoräre della nomenclatura della Luna o di Marte. E' Sufficiente ricordam Jo che le "Bande" sono le striscie cupe e le "Zone" le striscie chiare che le separano, e tutto viene da sè, tenando presente le divisicni climatiche della superficie, della Terra dall'equatore ai poli.

Ohi ha uno strumento lo punti su Giove; gli sarà facile riconosceve immediatamente tutte le bande e zone elencate, salvo talune delle estre mamente boreali ed australi. Ma se non giungere alla identificazione di queste uitime non si preoccapi; anche ch: ha Junga pratica le iden tifica spesso con difficoltt, senza contare che, ome ho aetto, non sempre queste regioni presentano dettagli definiti. Si tenga anche pre sente ohe la N.N.N.T.B. e la S.S. B. T. B. rappresentano i kordi delle relative calotte polari, e che è sufficiente che queste bende sianc as senti perchè la sfunatura polare raggiunga la N.N.T.B. e la S. S. Tu.B., rendendo invisibili le zone intercalate.

Ed cra che abbiamo tracciato per sommi capi ia geografia gioviana, entriano in qualche dettaglio che oi permetta di ratigurarcene una sione pìn comple ta. Sarà uno studio rapidissimo che avò tuttevia una imoortanza fondanentale perchè ci sarà da guida pex gli ogeotit che zotremo osservase.

Dende e Rono in dettagtio $=$ Va prenesso, e cio è fondamentale per gli studiost dj Giove, che i dettagli delle varie zono e bande sopra elon cate non sono trasportati da ura equal velociti di wotasione; il ohe, del resto, \hat{y} reso noto da tutti i trattati di astronomia. Preoisamente, I'area che si stende a sude a nord dell' Equatore, e sull' Equatore steg to, è animata da una velocita di rotazione alquanto pil rapida ohe nin Ia restante jarte del pianeta. Il fenomeno el alquanto diverso da quel. los anoor fitu noto, che si verifioa sul Sole. Sul Sole i periodi dj ro, tazions fi mlungano gradatamente man mano che dall : Zquatore si va verso t polis; wiove invece si hanno, grosso modo, due gruppi di periodiso, per meglto dere, due kictemi. Pei convenrione è stata adottata la sem cutente classificazione:

Sistema I: comprende le Zone Equatoriall e i due bo A di adiacenti del Le grandi Bande Equatoriali. Periodo di rotazione: 9h 50m 30s, 003.
Sistema II: comprende la rimanente parte del pianeta. Periodo di ro tazione: 9h 55m 40s,632.

Una volta fissato il meridiano zero per ciascuno dei due sistemi , è fa cile comprendere come possano essere date delle effemeridi con I'indioazione del meridiano centrale per ogni ora delgiorno in ciasoun sistema. Naturalmente le macchie che si osservano su Giove scartano sempre un poco dai periodi medi sopra indicati; il riscon tro coi dati delle effemeridi permette allora di misurare immediata mente lo soarto e quindi di trovare la velocità di rotazione effet tiva per ciasouna macohia.

Daremo oxa qualche dettaglio sulle formazi oni del pianeta. REGIONI POIARI NORD - Presentano un aspetto uniforme, con tinta fred da generalmerte tendente al bluastro. Puo avvenire ohe nella lorn parte più australe presentino aree chiare e allora si pud nntare la presenza di una Banda Artica (A.B.), del resto molto saltuaria.
BANDE THMPERATE NORD - II gruppo delle tre bande che vanno sot to que sto nome è, generalmente, interamente visibile. In genere queste ban de sono praticamente filiformi, tuttavia vi si possono vedere conden sazioni, talora anche molto stabili. Molte volte la preminente delle tre è la Banda Temperata Nord, ma pud sucoedere che La Zona Tropi cale Nord si dilati fino a sovrapporsi a quest'ultima, lasciando vi sibili le sole Pande Temperate Nord Nord e Nord Nord Nord. Occorre pertanto una certa attenzione nel loro esame perchè l'aspetto oitato puio portare a sbagli d'identificazione. Una caratteristioa di queste barde è la loro colorazione fredảa che, nelle condensazioni più vistose, pus essere nettamente verdastra o addirittura verdemoliva.
oonstatazioni di questo genere sono state fatte dal Iyot e dall'An toniadi col rifrattore di 8.3 cm . di Meudon; è tuttaria pussibile fairle con strumenti molto più piccoli. Chi scrive osserve distintamente questi colori con un riflettore di 25 cm .

Mentre le condensazioni che si formano sulle Dande Temperate possono essere seguite per iunghi periodi e se ne puo agevolmente ricava re il periodo di rotazione, nessun dettaglio del genere si ritrova solitamente nelle Zone intercalate. In pratica le Zone Temperate presentano solo sfumature d'ombra di scarso interesse.
ZONA TROPIOALE NORD - Di solito chiara e priva di dettagli, ha presentato talvolta in passato delle macchiette temporanee, tinte di car minio, che per la velocita di rotazione sembravano appartenere al Si stera I. E' interessante sorvegliare queste regioni perchè tali fenome
ni possono sempre ripresentarsi.
BANDA EQUATORTALE NORD - E^{\prime} quasi sempre la più bella banda del pianeta, la più intensa, la più ricca di dettagli e la più colora ta. Poichè il confine fra i due Sistemi cade nel suo Interno, le due meta, nord e sud, non ruotano a uguale velocità; ció genera aspetti interessantissimi e una notevole divexsità di apparenze sui bordi nord.e sud. La rotazione differenziale fa sì che si verificinino delle torsioni che si rivelano generalmento in forma di fila menti obliqui disposti da nord ovest a sud est, nitidamente delinea ti sul fondo cupo della banda. In buone condizionj di osservazione e disponendo di un ottimo strumento, tali filamenti si rivelano co stituiti da allineamenti irregolari di globuli chiari congiunti a rosario; così sono stati visti dal Terby e dal Taffara e cosi li. ha veduti lo scrivente nello scorso marzo, speoialmento nelle osaerva zioni eseguite al crepuscolo.

Il bordo nord della N.E.B. è rettilineo o con deformazioni poco pronunoiate; aderenti ad esso si vedono spesso delle masse scurig sime nel cui interno si originano delle curiose machie quasi pex fettamente rotonde e notevolmente lucide, che tendono poi lentamen to a disfarsi e a swotarsi nella Zona Tropicale, formando delle baie cire un poco per volta vengono riassorbite. Bellissimi esempi di questo fenomeno sono visibili su Giove mentre scrivo queste righe (aprile 1955).
E^{\prime} interessante determinare la velocità di rotazione di queste macohie, seguirne l'evoluzione e stabilire entro quali longitudini siano raggruppate (s'intende, nel sistema II).

Il bordo sud invece è sempre onculato, spesso con prominenze che hanku tutto l'aspetto di montagne viste di profilo. Da queste prominenze partono quasi sempre dei pennacohi che sfunano nella zona Equatoriale, cosicohè più ohe montagne sembra di vedere dei valoani in distanza. Ovviamente questi paragoni illusori servono per chiari re meglio 11 Ioro aspetto. Esse sono trascinate dalla Corrente Equaroviale, percid si muovono col sistema I; è facile seguirle da un giorno all'altro, tuttavia l'osservatoro noterà la loro rapida varia bilità e la loro facilità ad essere riassorbite.

Girca ill colore, la N.E.B. presenta nei periodi di maggior svilup po tuna meravigliosa tinta rosa carminio, ohe puo passare in altre epoche al rosso-rame e al rosso pompeiano, per decolorarsd, talora, in brunc. Il rosa carminio è apparso particolarmente evidente in al cune osservazioni she lo scrivente ha eseguito ad Aroetri durante 1.'opposizione 1953-1954 con un rifrattore di 37 cm . Le recentiosservazioni, col rielettore di 25 cm , hanno invece mostrato una viva ce tinta rosso-raggine o rosso-pompeiano. Talora la tinta rossa si
diffonde un poco frori della banda, nella zona Tropioale Nord (come, per esempio, nell'opposizione 1952-7.953). Ie prominenze nella Zona Equatoriale hanno invece delle tinte violaceegsenexalmente mol to difficili da definire data la loro intensita che le fa sembrare quasi nerastre.
(continua).

Emilio Bellavite
"LA VISIBILITA' ATMOSTERICA NELLE OSSERVAZIONI ASTROIVONICHE"૬
(seguito e fine)

Le perturbazioni a carattere di fronte froddo che invesuono la Valpadana curante la stagione estiva sono caratterizzate, come è stato rilevato nella puntata precedente, da fenomeni temporaleschi, tanto più intensi quanto maggiore è la velocità di spostamento del frnnte, quanto più elevato è il gradiente temico tra la masa d'arja prem e post-frontale ed ineine quanto maggiore è il contenuto igro metrico dell'aria. I' ottima visibilita che interviene dopo il passag Gio della perturbazione non ha alcun rapporto con questi tre fatto ri, potendo essere di trascurabile importanza la mancanza ai uno od anche di due di questi. Un unico elemento è invece di estrema impor tanza sulla goneai di buone condizioni di visibilita dopo I'avvento dol. fronte freddo: Ia sua direzione di provenionsa. Gì̀ si era acoenaato di questo argomento nel corso della prima punteta di queste note.

Qusindo il fronte fredan proviene da ovest o sud-ovest (a la condí zione pit frequinte, d'estate), è intuitivo pensaise ohe la massa di aria avanzante - di cui il fronte stesso costituisce il jijnte - non sia molto fredda, non provenendo direttamente danie resioni articio. Ma nel suo lungo giro attraverso I'Atlawion si è arricohita enome mente d'rmidita perdendone sojo la minima parive nello scavalcamento delle Alpi Occidentali, relativamente non molto cilevate. Perciò, dei tre Sattori sopra esaminati è il terzo che predomina e le manifesta zioni temporalesche, pur facendo difetto gli alifri dues possono essere ugualmente di grande intensita. E' noto infatti che i tempora.. Ii pìr ricohi di pioggia (ma non di grandine) sono proprio queili pro venienti da ponente, specie nella fascia settentrionale della Valpa dana. A poichè, come abbiamo visto, la visibilità atmosicrica à inversamente proporzionale al contenuto igrometrico dell'aria, ne conseste che i fronti fredai oon direttrice di spos tamento tra sudmovest ed ovest non porteranno mai a buone condicioni di visibilita.

L'osservazione degli astri sarà possivile con sufficiente chiarezza soltanto qualche ora dopo il passaggio del frorte.

Il fronte freddo estivo proveniente dalla parte opposta e cioè da levante è assai rero perchè in contrasto con la nomale direttrí ce di marcia delle correnti dell'alta atmosfera. Inoltie esso non \bar{e} mai acompagnato da fenomeni atmosferici importanti poiehela massa d'aria che lo segue è povera di vapore acqueo (r roviene jnfatti dagli gteminati ed aridi territori dell'Europa Orientale) e relativamente fredda, avendo subito un rapido processo di riscalamento a contatto con l'aria assai calda giacente d'estate sul continente.

Il fronte freddo proveniente da sud è pure rarissimo in quanto viane normalmente neutralizaato nel lungo giro che deve compiere prima di raggiungexe le nostre regioni. Puó, talvolta, provocare piogge a carattere di rovescio od anche temporalis ma I'umidità del I'aria che i'accompagna è tanto elevata che invece di portare, dopo $i l$ suo passaggio ad un miglioramento delle condizioni di visibilita è più probabile che le peggiori.

Soltanto il fronte freddo proveniente dai quadranti nordici è, dunque, quello che determina condizioni di visibilita verticale ed orizzontale veramente ottime ed ideali e che potranno prolungarsi pex più giorni diseguito.

Non ci ripetiamo a chiarirne le ragioni in quanto già diffusamente trattate nella prima puntata, quando abbiamo parlato dell'influenza dei fronti fred̉i sulla visibilità durante la stagione inver nale.

Riassumendo, dunque, quanto è stato esposto in questa serie di ax ticolj, possiamo dire che le variazioni della visibilita atmosferica dipendono dal passaggio, in Valpadana, dj masse d'aria a diverse caratteristiche termodinamiche e quindi dalle perturbazioni, di cui so no I'espressione. Abbiamo osservato cho le perturcasioni sono di tre tipi: a carattere di fronte caldo, di fronte freddo e di fronte occiuso. Quest'ultimo a sua volta si divide in fronte ocoluso di tipo fredco e fronte occluso di tipo caldo i quali, per quanto riguarda il loro comportamento agli effetti della visibilita, possono essere associati, rispettivamente, al fronte fredao ed al fronte caldo ti pioi.

I]. fronte caldo, qualunque sia la sua direzione di provenienza, porta invariabilmente ad un peggioramento della visibilita, con fenomeni di nebbia d'inverno e densa foschia o caligine d'estate. Il fronte freddo, al contrarlo, è apportatore di atmosfera limpida (se si eccetiua il caso di un fronte freddo proveniente dai quadranti
meridionali) e, prescindendo dai concomi banti fenomeni temporaleschi estivi, la visibilita è ottima in particolare quando áotjo fronte proviene da nord.

Naturalmente, per maggior chiarezza, abbiamo lumeggiato solo i casi tipici ed estremi. In realtà, altri fattoni seconäari entrano in gioco il più delle volte e, nelle stagioni intermedie soprattut to, le manifestazioni della atmosfera sono tante e così difformi θ varie che è spesso necessaxia una lunga esperienca meteorologica della zona per spiegare e rendere chiaramente ragione di ogni feno meno.

I' 'astrofilo vorrà sapere, a questo punto, se vi è la possibilitì, anche se totalmente digiuno di meteorologia, di prevederegoon un anticipo di un giorno o due, quando si verificheranno buone condj. zioni di visibilita, onde mettere a punto il. suo strumento per una conveniente osservazione celeste.

Cio puo essere relativamente facile se possicie un bun barometro e ne sappia apprezzare ognt sua minima variazi one. Piuttosto che un barometro di tipo comune sarebbe, naturalmente, preferibile un ba rografo, di cui vi sono in commercio ottimi esemplan. . . anche se piuttosto costosi.

Attraverso le variazioni barometriche è reletivanento facile preved, re, a distanza di circa 24 ore, l'avvento di un fronte fredo da nora. pitu difficile invece quando iJ. Ironte exeddo provione da cillire dixszioni.

Se si osserva che la pressione regolarmento ciminuisce per piut ore di seguito senza che si abbia un pegzioramento det tempo, spocio se tale abbassamento si accompagna, d'estate, ad un moderalio o forte verto, proveniente dai quadranti ocoidentali durante le ore pomeriäiane, è cuafi certo l'arrivo, a breve soabonza, del fronte froddo nordico.
E con questo si è dimostrato che la meteoronogja mù recare grarai servigi anche all'astrofilo: percenemente irfitato perchè il. cielo grigio ed opaco gli impedisce la consueta paspeggiata nottuicna attraverso le incomnensurabili vie del cielo col suo prezioso e fedele strumento.

IPOTESI SULL'ORIGINE DEJ RTETEVO ITTTARE

Basta puntare sulla luna un cannocchiale, sia pur modestissimo, per godere uno spettacolo dei più meravigliosi ed emozionanti.

I'argenteo disco più o meno nabreggiato, o la stitile falce, si trasformano immediatamente in una superficje rugosa, frastagliata da innumerevoli asperità, ricca di crateri, di circhi, di catene mon. trose, di pianure solcate da profondi crepacci.....

Ma ancor prima che Galileo mettesse a disposizione degli studiosj. il primo carnocohiale, la curiosità umana si era già sninta ad inãga ro sulla superficie del nostro satellite e la maggior parte dei liacsnif antichi ebbe ad esprimere il proprio parere, dettato o da una sbrigliata fantasia o da un pia o ciano logico buonsenso, sulla reale nntura della Luna. Talete, Anassimandro ed Empeäocle gia avevano in tuito che la Luna non aveva luoe propria, bersi rifletteva i raggi irviatile dal Sole. Ad Orfeu vengono attribuiti aloani versi che afo fomanc aver oreato Iddio un'altra Terra immensa, ohe gli immortali chiamano Selene e i mortali Luna, nella quale si exgono innmerevoli montí, città ed abitazioni.

Anassagora riteneva che la Iuna fosse ricca di monti, di vallate e di aampagne, mentre j filosofi dolla scuola pitagorica apfermaveno che gli animali e gli alberi della Luna superavano per statura e per foxza di quindici volte quelli della Terra.

Anche Plutarcu trattos con molto rigore oritico, dell'abitakilità delba superfioie lunare, ma l'acume osservativo suo e dogli altri pen satori non era purtroppo sostenuto da alcum mezzo adoguto di indagine od ogni appassionato osservatore doveva basare Ie sue amgomentazioni su apparenze fallaci.

If noto infatti come le principali macchie visimili ad nochio nudo sulla superficio $\overline{\text { cella }}$ Iuna abbiano jn ogni tempo solleticato Ie fantasie: chi ha creauto di vedervi la testa di un uomo o di una donna, chi un corpo intero, chi un drago, chi daino oon un fasoio di pine (I) e chi, finalmente, il famoso "bacio degli amanti" (facilmente osservabile peraltro, a Iuna piena con un debole binocolo da teatro).
(1) - che son li segni bui di questo corpo che laggiuso in terra Fen di Cain favoleggiar altri?
(Darte,Par., IIO, 49-5I)

Ma con I'apparire dei primi cannocohiali, abbandonata ogni fanta sia, fu intrapreso uno studio meticoloso della superficie lunare.

Già Galileo nel 1610 tracio i primi disegni enel 1647 apparve una prima e completa carta lunare ad opera deli'astroncmo Hevelius. Altre carte, sempre più complete, furono poi diseznate da Beer, Mard.er, Iorhmann, Schmidt, Neison ecc.... con que la bizzarra e sugछ૬stiva terminologia, in parteorigine astrologica, che tuttora è rimasta in uso.
E^{\prime} naturale che già i primi studiosi della superficine lunare, og servanüo i rumerosissimi circhi, crateri e craterini ohe presenta 11 nostro satellite, abbiano pensato, in analogia a quanto è avvenuto e avviene tuttora sulla Terra, a forze ernttive endogene ohe, proxom pendo alla superficie con conseguente emissione äi gas incendescenti e di magma lavico, abbiano determinato il Iomarsi di quei tipici ric Ilevi a forma anulare. Invero, la rassomiglianza con alcune zone vai. caniche terrestri è assai notevole. Alcuni crateri di vulcani ormat spenti dell'Islanda e dell'altipiano dell'Alvernia hanno un aspetto sriccatamente lunare. Particolarissimo è poi ± 1 caso del Vesuvio o dei Campi Flegrei, a propositu dei quali scriveva il Flammarion:
"Siffatta rassomiglianza è talmente spiccata ohe si potrebbe
"chiamare la Luna un vasto campo flegreo" (I'Astronomia pope lare, capitolo IVO).
(continua).

$$
\frac{\text { J PIANETI DURANTE II MESE DI MAGGTO } 1955}{\text { (a cura di C. Recla) }}=
$$

Tutte le indicazioni di tempo sono riferite al T.M.E.C.
MFRCURTO - I'elongazione oxientale di Mercurio dal Sole che il giorno 21 raggiunge il suo massimo valore di $22,1 / 2$, offre ancora l'occasione di poter osservare il piane $\ddagger a$ all'orizzonte serotino.

Il giormo 16 il sole tramonta a $19 h 28 \mathrm{~m}$, Mercurio a 27 h 35. Una settimana prima e dopo la massima elon gazione, Mercurio potrà essere rintracciato oirca 1 ora dopo il tramonto del sole, basso all'orizzonte all'ovest, nelb costellazione del Toxo.
VENERE - Dapprima nei Pesci, alla fine dol mese nel Oapricomo,
sorge sempre I^{h} prima del sole.
MARTE - Nella costellazione del Toro rimane visibile tatto il mese fino circa alle 22 h nel cielo serotino e si allontana dalla terra fino a 2,1/2 unita astronomiohe.
GIOVE - E' ora divenuto astro della sera, visibile soltanto nella prima meta della notte, tramontando a fine mese già verso le 23h. E' percio da ricercare all'imbxuni re nel cielo sud occidentale.
SASURNO - Raggiunge in questi giorni la sua visibilità piû favorevole, dato che il giorno 9 si trova in opposizin ne al sole. Culmina verso mezzanotte a sude splende accanto alla stella alfa della Rilancia.
UPANO - Tramonta all'inizio del mese ad l^{h}, alla fine verso
INEMUNO - Tramonta alle $4 \mathrm{~h}-1 / 2$ rispettivamente alle $2 \mathrm{~h}-1 / 2$.
FASI IUNARI
Primo quarto
Iuna piena
Ultimo quarto
Imna nuova

giomo	28	a	15 h	1 m
$"$	6	$"$	23 h	1 mm
$"$	15	$"$	2 h	42 m
$"$	21	$"$	22 h	5 m.

REITMRII OEEESTI INTERESEANTI OSSETVABIII DURANTE IT MEGE DI MAGGTO
(Da Stemkalender 1955 - Gesellschaft fur Natur u. Technilr)

orino	7	7 h	22 m	- Saturno in congiunzione con la Luna a +505
"	70	7 h		- Saturro in opposizione al SoIe.
n	20	22h		- Giove in congiunzione con Urano a -0011
"	27	23h		- Venere in congiunziono on la Iuna a-6019' - Mercurio alla sua massima clongarione Est
"	23	J1.	26m	io in congiunzione con 72025
"	23	7.9h	7 m	- Marte in congiunzione con
"	25	18h	16 m	- Giove in congiunzione con la Linna a $+3015^{\prime}$

OCOUTHAZIONI TDINARI

(Dall'Annuario astronomico 1955 della Rivista "Ooelum")

Giorno	Stella	Grandezza	Fenomeno	Età Luna	Tempo in h \& m .
1	237 B Leo	$6^{\text {m }} \cdot 3$	Immersione	9 d. 3	20h 6m
1	55 Leo	6.0	Immersione	$9^{\text {d }} \cdot 4$	22h 28m, ?
1	+ I0 2502	6.9	Immersione	$9^{\text {d }}$. 4	22 h 5 mm .2
12	199 B Sgr.	6,4	Emersione	$1.9{ }^{\text {d }}$. 5	Ch 49m,9

$$
D A I I E \quad R I V I S T E
$$

(a.cura di C.Recla)

VELOCITA' DEITA LJCE =

Il National Bureau of Standard riporta due nuove determinazioni della velocità della luce, l'una ottenuta a mezzo delle radiazioni infrarosse, l'altra ottenuta con onde radio ad alta frequenza.

I due risultati, completamente indipendenti, sono mol to vicini. Essi confermano quelli uttenuti dopoguerra; per la maggior par te con la teonica delle microonde, seconáo i quali la velocita del Ie radiazioni elettromagnetiche è di circa 299.793 Km . al secondo, in luogo di quelle di Km .299 .776 ottenute con misurazi oni precedenti。

Per la nuova determinazione ottenuta con onde radio ad alta frequenza, E. F. Florman colloob i suoi istrumenti in un lago prosciugato Hell^{\prime} Arizona dove esisteva una distera di territorio spianato utilizzabile per un'estensione di circa 5 miglia. Egli opero con onde di 172,8 megacicli al secondo, per evitare interferenze di radiazioni celesti e per ridurre al minimo gli effetti di fondo e Ie dimensioni fisiche del sistema impiegato per le ricerche di misura. I risultati ottenuti furono: $299.795 \pm 3 \mathrm{Km}$. per secondo, quale media ponderale fra 110 micure indipendenti realizzate durante 10 giorni.
E.K. Plyler, I. R. Blaine e W. S. Connor misurarono spettrosco picamente le costanti del momossido di carbonio con i raggi infra rossi, seguendo un metodo originale suggerito dal Dr. A. E. Douglās di Ottawa.

Misure ottenute in laboratorio di lrigheraa d'cnda per le lim nee spettrali furono usate per calcolaro i vadori áclie costanti molecolari ricorrenti nelle formule teonicho. Valori per lesterse costanti furono ottenuti nelle due equazioni infrerosse e di microonde, però in unità differenti, quelle infrorosse in cme reciproci, quelledelle microonde in megacidi per secondo. La proporzione delle costanti corrispondenti permette di dedurre la veloci tì della propagazione elettromagnetica, corrispondento al valore a士 $299.792 \pm 6 \mathrm{Km}$. al secondo.
(da "Sky and Telescope - April 1955)

ATYIVITA' DET CIRCOLO

Profondo cordoglio ha suscitato la notizia della morte di Albert Einstein. Una serata di riunione è stata dedicata alla commemorazio ne del grande Estinto, del quale sono state ricordate ed illustra to le rivoluzionarie teorie che tanto impulso hanno dato anche agi.i studi astronomici.

I'attività del Circolo è continuata regolarmente e numerosi soci, appassionati del cielo, hanno preso la parola per illustrare i rij sultati delle loro osservazioni e dei loro studi. Particolare inte resse ha destato una disquisizione di geometria analitica intavola ta dal socio rag. Bichelli per definire il moncetto geometrico di Inea retta.

Con I'avanzaxe della bella stagione, 11 socio geom. Recla ha gen tilmente messo a disposizione del Ciroolo i suoi magnifici istxumonti, per cut è prossimamente da prevedere una lunga serie di fruttuoss 'osservazioni.

Quota di adesione al Circolo: I. 1000.- annue, con diritto di ri

Per adesioni e comunicazioni: "Circolo Astrofili Veronesi" - Via Monte Ortigara, 4/a - Verona -

Ja riproduzione degli articoli contenuti nel presente fascicolo è consentita purchè ne sia citata la fonte.

