A N NO I.
N. 3
N O I I I I A \quad I \quad I O
D E I
CIRCOIO ASTROFIII VERONESI

```
--===0===--
```


All'ultimo momento apprendiamo, con la più profonda costernazinne, la notizia del gravissimo luttn che ci ha col pito: GIOVANNI LENOTII non è più.

Egli ci ha lasciatn per mirare più da vicino quei cieli che mai si è stancato di amare e di far amare.

E' scomparsa con Iui una nobilissima figura di studiosn, di divulgatore, di cultore dell'Astronomia, della Scien za e dell'Arte, di amante di ogni cosa bella.

Il Circolo Astrofili Veronesi, unitamente agli Astro fili italiani tutti, porge alla Famiglia dell'Estintc i sensi del più profondo cordoglio.

CARLO RECLA

- IL BINOCOLO ED IL SUO IMPIEGO NELIE OSSERVAZIONI ASTRONOMICHE
(Continuazione e fine)

Il potere risolutivo, cioè la facclta di separare oggetti molto vicini e distinguere particolari, nen è sfruttato completamente dal binccoln, dato il suo mndesto ingrandimento.

La resa di un binocolo in questo senso è specialmente importante per osservazioni fatte su stelle doppie.

Svariati esperimenti su stelle doppie, eseguiti con binocoli fig sati rigidamente, hanno mostrato che un binocolo di 8 x possono ve nire separate stelle di $35^{\prime \prime}$ di distanza, le cui componenti non siano di luminosità troppo diversa.

Per I'osservazione comoda di tali particolari fini, come anche quellí di parte della superficie lunare n di macchie solari, è come sopraddetto, necessario munire 10 strumentn di adatto sostegno, che puo essere un semplice attacco da fissare ad un ramo d'albero o qua lunque palo di legno, o sostegno da tavole o davanzale o infine un semplice, leggero, ma solido treppiede.
\therefore Le maggiori case costruttrici di binocoli, specie la Zeise, for njscono tutti e tre questi utili accessori.

Per chi è affetto da stigmatismo o strabismo è opportuno che os servi tenendo gli occhiali propri, ed in questo caso è bene che il binocolo sia munito di conchiglia oculare bassa, onde ridurre al mi nimo la reatrigione del. campo visivo a cui gli occhiali obbliganc 1'osservatore.

Puo essere utile in questo caso anche munire lo strumento di appositi vetri correttivi da applicare sulla conchiglia oculare.

Chi invece è affetto da semplice presbiopia o miopia, puo benis simo naservare senza occhiali, modificando perd allora opportunamen te la messa a fuoco, spostando l'oculare verso + per i presbiti e verso - per i miopi sull'apposito anello riportante tali valori in diottria.

Tutte queste manipolazioni sono assai importanti per il pieno sfruttamento del binocolo.

Il sole si osserverà applicando agli oculari appositi schermi, di cui la casa Zeiss costruisce due tipi "chiaro" e "oscuro". Le osservazíoni normali si faranno sempre con questi ultimi, onde
non mettere in pericolo la vista; quelli più chiari - sempre però in vetro neutro - si applicanc quando il sole è parzialmente coperto da nubi leggere nebbie o in caso di eclissi di sole. Ciò vale per binocoli muniti di obiettivo fino a $30 \mathrm{~m} / \mathrm{m}$. di dia metro. Per quelli di diametro maggiore, fino a $60 \mathrm{~m} / \mathrm{m}$. le osser vazioni saranno molto brevi, per non esporre alla rottura gli schermi applicati, ed anche per evitare danneggiamenti agli ocu lari, che essendo sempre composti di più elementi cementati con balsamo del Canadà ne avrebbero a soffrire.

Eventualmente sarà opportuno diaframmare gli obiettivi a cir ca $30 \mathrm{~m} / \mathrm{m}$.

Si puo al binocolc pure applicare per le osservazioni solari, il metodo della proiezione. Realizzando con esso per es. un'immagine solare di circa $55 \mathrm{~m} / \mathrm{m}$. di diametro, si avrebbe con 0,5 m / m. le dimensioni del diametro terrestre, utile cid, per confron ti con le macchie solari osservabili con tale metodo.

La luna, quale satellite della terra è il corpo celeste pill vicino. Un binocolo di 8 x riduce la sua distanza media a Km . 50.000 , uno da 18 x a 22.000 , permettendo in tale modo di scorge re un'infinità di particolari la cui deacrizione e numerazione riempirebbe un discreto fascicolo.

Mi limiterò ad accennare, che per tale osservazione e indispen sabile il sostegno dello strumento e che durante le osservazioni eseguite verso le fasi maggiori, specie a luna piena sarà molto utile applicare agli oculari opportuni filtri gialli o giallo arancio onde non farsi accecare la vista dal forte chiarore.

Per primi osserveremo i Mari, quelle grigie superfici che si vedono bene anche ad occhio nudo; i più interessanti senza dubbic sono pero i crateri ed i circhi lunari, che osserveremo agevolmente presso il texminadore.

Ciò che rende maggiormente utile e altamente suggestivo il bí nocolo nelle osservazioni lunari, è quella delle occultazioni di stelle, che possono essere osservate sia durante l'immersione che all'emersione.

Pianeti. Per quanto riguarda i pianeti ben poco si ha da far xilevare.

Li ingrandimento disponibile è insufficiente per permettere di scorgere quei particolari sui dischi planetari che con piacere og serviamo sui disegni eseguiti con l'ausilio di grandi istrumenti.

Cosi Mercurio ci apparirà come un punto più o meno luminose in
un comune binocolo; solo in istrumenti di $60 \mathrm{~m} / \mathrm{m}$. di diametro con almeno 18 ingrandimenti, è possibile seguirlo sulle sue fa si.

Venere. essendo maggiore di grandezze e più vicina, richiede un binocolo che abbia 8-10 ingrandimenti per mostrare il suo gioco di fasi.

Marte, mostrerà, nel periodo di suo massimo avvicinamento alla terra in un comune binocolo di 8 - 10 ingrandimenti un modesto dischetto di colore arancio e nulla più.

Per poter rilevare le maggiori conformazioni, oltre le calot te polari, sono necessari binocoli di almeno $80 \mathrm{~m} / \mathrm{m}$. di apertura con ingrandimento di 40 x .

Giove, il gigante dei pianeti è quello che rende maggiormente grata la sua osservazione. Già un binocolo di 8 ingrandimenti mo stra un disco distinto.

Ma lo spettacolo più attraente e suggestivo è quello dell'osservazione dei movimenti dei suoi 4 satelliti nell'alternarsi dal le loro posizioni rispetto al loro grande pianeta.

I dettagli maggiori della superficie di Giove vengono accessibili solo con binocoli da $80 \mathrm{~m} / \mathrm{m}$. e 40 ingrandimenti, che allora mettono in rilievo il forte appiattimento del disco o le strisuie equatoriali di maggiore intensita.

Saturno. onn il suo anello, che ha sempre costituito l'ambizio no maggiore degli astrofili delude nella sua visione binocolare ottenuta con normali istrumenti, la sua grande lontananza lo fa apparire nei comuni binocoli come un piccolo disco che però mostra un allungamento equatoriale, dovuto alla visione indistinta dell'a
nello.

Solo un binocolo con obiottivo da $50 \mathrm{~m} / \mathrm{m}$. e con 18 x è possibile rendere ottimamente staccato dal nero del cielo il pianeta con il suo anello, simile ad una miniatura.

Un binocolo da $110 \mathrm{~m} / \mathrm{m}$. e con ingranidimento 72 x lascia perfino scorgere la divisione di Cassini, quando l!anello si trova in posizione d'inclinazione favorevole.

Degli altri pianeti più Iontani: Urano, Nettuno, Plutone, diro che del primo, Urano, solo con binocolo di $80 \mathrm{~m} / \mathrm{m}$. e 40 ingran dimenti si potrà individuare il disco, mentre Nettuno apparita semplicemente come puntino luminoso.

I'ultimo, Plutone, di $15^{\text {ma }}$ grandezza richiede istrumenti trop po grandi per essere osservato, e sarà percio ben difficile che
un astrofilo possa scorgerlo con i suoi abituali mezzi.
Le comete, appartengono alle formazioni più interessanti per 1'osservazione, purtroppo la loro rarita di apparimione, la dif ficoltà della ricerca e la loro debole luminosità rendono alquan to precaria la ricerca e lo studio.

Il binocolo, specie se di opportuna dimensione ed in rendimen to, sarebbe 10 atrumento ideale per il loro studio. La sua grande luminosita, il grande campo visivo, facilitano molto meglio di altri istrumenti la loro ricerca.

La ricerca di tali corpi celesti, presuppone perd la perfet ta conoscenza dell'ubicazione delle piccole nebulose ed ammassi per poterli distinguere da eventuali comete nuove, tenuto conto che esse, spesso, specie allo stadio di formazione assomigliano a certe nebulose.

Naturalmente l'eventuale movimento di tale formazione ossex vata in diverse sere, deciderà se trattasi di soggetto cometario o di altre formazioni.

Un binocolo con obiettivo di $120 \mathrm{~m} / \mathrm{m}$. e 20 ingrandimenti mostra agevolmente tutti gli oggetti del genere fino alla 12^gran dezza.

Stelle cadente e meteore, di esse, sia con cannocchiale che con binocolo, è poco proficua losservazione; le loro manifestazioni sono troppo fuggenti.

Non è raro però che una meteora luminosa, lasci lungo la sua traiettoria una scia splendente, che in casi di lucentezza speciale può esser seguita per $1 / 2$ ora o più, per la quale operazione è particolarmente indicato il binocolo col suo grande campo visivo e le sua grande luminosità.

I residui luminosi della meteora non rimangono immobili, ma si muovono fra le stelle, modificando continuamente il loro aspetto. Siccome l'altezza media in cui ha luogo il fenomeno e all'incirca $80 \mathrm{Km} ., \mathrm{l}$ 'osservazione dei cambiamenti di posizione dei residui meteorici rappresenta l'unico mezzo per I'esame delle correnti aeree in quelle altezze, cid che naturalmente è di grande intere日 se per la scienza.

Amnassi stellari e nebulose

Partiamo dal più evidente ammasso, visibile ad occhio nudo, quello delle Pleiadi. Un binocolo con 10 ingrandimenti mostra già i 3 piccoli compagni di Alcione, la stella centrale più chiara.

Il vasto campo visivo del binocolo, anche di normale ingrandimento permette la sua forte luminosite di trovarle rapida mente e di godere lo spettacolo delle centinaia di stelle splen - denti che fanno parte dell'ammasso osservato.

Specie nella stagione invernale si offrono per un magnifico spettacolo M 35 nei Gemelli, M 46 e N G C 2422 nella Nave Argo, gli ammassi M 50, NG C 2548, 2301 e 2244 nel Monocero. Un ammasso di speciale luminosità è quello del Presepe, nel Cancro M 44, situato a triangolo fra due stelle che trovanoi in una zona piuttosto rada di stelle.

Quest'ammasso è altrettanto bello quanto le Pleiadi e le Iadi, solo che è formato in preponderanza di stelle più deboli, di cir ca 6 m .

Nell'Auriga, nel bel mezzo della via Lattea, possiamo ammirare l!M 36, M 37 e M 38.

Vicino ad Algol, classica variabile, possiamo osservare il bel I!amasso M 34 in Perseo, come pure i meravigliosi h e chi fra Perseo e Cassiopeia.

In quest'ultima possiamo vedere il debole amasso M 103.
Nel Cigno, non lungi dalla nebrlosa America, potremo vedere I'ammasco M 39.

Questi sono gli amassi più evidenti e più facilmente ịdentificabili per l'osservatore munito di binocolo della potenza di almeno 10×50.

Non è possibile qui enumerare anche solo una parte di altri oggetti, pexchè uscirebbe dall'inquadratura prefissa per l'arti colo presente.

Le nebulose, come si sa, possono essere di natura diversa, possono essere rappresentate da ammassi stellari assai lontani, le cui singole stelle, data la lontananza, sfumano in un assie me che dà lorn il carattere indeciso della nebulosa, come ad osempio nelle nebulose a spirale, esse rappresentano sistemi ga lattici propri con milioni di stelle, oppure noi troviamo in cie lo delle vere nebulose, formate da nubi gigantesche di gas cosmí ci luminescenti.

Tali sistemi appartengono al sistema della nostra via Lattea. La nebulosa più luminosa è quella d!Orione, che in un buon binocolo offre una visione indimenticabile.

Naturalmente, è da premettere che, specie per le nebulose, avendo noi a fare con oggetti assai deboli, è oppoxtuno per l'og servazione scegliere notti oscure, con atmosfera limpida e prive di chiarore lunare.

Un'altra nebulosa di pari luminosita (5 m.) ed altrettanto magnifica è quella d'Andromeda, che in un binocolo da $50 \mathrm{~m} / \mathrm{m}$. d'aper tura mostra la forma appiattita spiraliforme.

Sotto questa, nel triangolo, fra Alfa e Beta, dellifnsieme vi è una nebulosa a spirale, bensì grande (M 33), ma estremamente debo le, che può prestarsi assai bene per esaminare la luminosità del proprio binocolo.

Un'altra, altrettanto debole è I'M 51 nei Cani Venatici.
Un binocolo da 10 ingrandimenti mostra di essa un piccolo disco opaco. In notti particolarmente belle ed oscure, si potrà ng servare la famosa nebulosa della Lira, che nei comuni binocoli si mostra come un piccolissimo disco, mentre per pnterla vedere nella sua forma anulare, occorre almeno un binocolo da $80 \mathrm{~m} / \mathrm{m}$. con 40 ingrandimenti.

Una nebulosa più chiara è l'M 27 nella Vulpecula, che un bino colo di 8 ingrandimenti già mostra come un dischettn chiaro.

Una regione assai ricca di nebulose, un vero vivaio, è costituito dalla costellazione del Sagittario, che specie nelle belle notti estive ci mostra tutte le sue meraviglie.

Abbiamo così, particolarmente degni di osservazione, 11 M 8 (ammasso e nebulosa) M 16, M 17, M18, M 24, M 25, M 23, M 21 , M 22 (tutti ammassi) calcolati da Nord verso Sud. Vi è poi la fa mosa nebulosa Trifide M 20, ed i due ammassi situati a Sud, M6e M 7 .

Con cid abbiamo esaurito in parte il nostro compito, quello di mostrare al possessore di un comune buon binocolo, quante possibi lità, quante fonti di soddisfazioni può procurargli il suo istrumento, se impiegato sapientemente e soprattutto con passione inesauribile.

Dario Tomelleri
I' ASTRONOMIA VISTA COME DILETTO

In una modesta pubblicazione data alle stampe in Firenze "oon licenria ot privilegio" nel lontano 1565 si legge:
"se le molte fatiche della vita umana non fossero temprate "da qualche diletto, ancora che breve, non è dubbio che al "la maggior parte degli uomini più rincrescerebbe il vivere "ohe il morire......
"Onde saggi meritatamente si possono reputare quelli, "i quali in mezzo alle gravissime cure di reggimenti di "stati, di traffici mercantili, e di governi delle proprie "famiglie, si sanno procacciare qualche onesto e piacevole "trattenimcnto, mediante il quale possono in parte ristora "re gli affaticati spiriti........"
Da queste poche righe scaturisce una chiara verita sulla qua le viene da meditare seriamente. Infatti, che acopo avrebbe la vita se I'uomo togliesse ad essa la breve parentesi di qualche ora al giorno dedicata al sollievo dello spirito e allo sviluppo del sapere?

Se l'uomo, l'essere più perfetto della creazione, dovesse de dicare interamente la vita al solo lavoro, preoccupadosi soltanto degli interessi materiali o delle basse passion:. non si renderebbe simile ad un bruto e la sua vita non sarebbe vuota, sfumata, umile e sottomessa?

E' pertanto una necessità, quasi un bisogno istintivo, quello di intercalare al lavoro ed alle fatiche quotidiane qualche ... svago sano onesto ed economico che dia uno scopo al procedere della pur tanto breve vita.

Certamente le gioie più pure, più elevate e più nobili sono quelle che derivano dallintelletto. La scelta non puod mettere in imbarazzo anche perchè l'uomo per sua natura è portato ver so il più piacevole e onesto dei trattenimenti; la lettura del libro della natura.

I'astronomia, regina delle scienze è quanto mai suggestiva, specie se si ricorre all'ausiljo di uno strumento ottico che con senta, se opportunamente manovrato, di penetrare nelle immenze profondità Sidèree, nel sacrario di quelle maestose vastità dove ancora in epoche relativamente recenti non era neppure pensa-
bile che un giorno lo sguardo dell'uomo potesse indagare. Penetrare nelle stupende bellezze di quel vuoto, percorrexe quegli spazi celesti con la vista e con lokspirito, varcare i confi ni di tanta inimmaginabile vastità anche per un istante, lontaní dalle quotidiane preoccupazioni e dalle bassezze del materialismo contemporaneo.....

An! se gli uomini che vivono su questo astro convenzionalmente chiamato Terra, incominciassero ad elevare lo sguardo verso il cielo! Imparerebbero ad amarlo, ed esso li ripagherebbe abbon dantemente rivelando i suoi tesori, eiutandoli a sollevarsi da questo pulviscolo su cui fermentano tanti affanni e donando loro la preziosa chiave che consente di peretrare nei sublimi regni dello spirito.

E nell'esaltazione data da quelle visioni troveranno pure il balsamo ristoratore che agira su loro come fresca rugiada che nelle notti arse e sature di afa soffocante si posa dolcemente sulla vegetazione prona per l'arsura, dissetandone le foglie che si dischiudono quasi per accogliere in riverente omaggio sul loro specchio, l'imma ${ }^{5}$ ine riflessa delle stelle che dai loro troni inviolati tramandano in un coro di luci a di colori l'armonia del I'arpa celeste.

Certamente la volta celeste ha attirato, in tutte le epoche passate fin dall'età Omerica e da quella della civiltì Egiziana, la commossa attenzione, a di generazione in generazione, nel corso dei secoli, i popoli si sono tramandati con le loro religio ni, usi, costumi e leggende, le insolute domande sui misteri dell'universo che li circondava.

Fosse possibile farli rivivere un attimo sufficiente per permet tere loro di guardare attraverso l'oculare di un telescopiol Far loro vedere gli ammassi locali, le nebulose galattiche e quelle extra galattiche e spiegar loro che quanto osservano è distante centinaia, migliaia o milioni di anni luce, soddisfacendo per 1'oo casione la loro curiosita nello spiegare che un anno luce è il percorso fatto dalla luce in un anno, pari cioè a $9,1 / 2$ trilioni di kilometri (9.500.000.000.000), cioè 63.320ilza distanza dalla terra al sole.

Se inoltre, a scopo di paragone e per dar loro un'idea délla. unità di misura, spiegassimo che il sole è distante dalla terra, in media, nostro punto di osservazione, 149.500 .000 Km . cioè 23.440 (cifre tonde) raggi equatoriali celesti, e che la luce, correndo alla velocità di 300.000 Km . al secondo, impiega 8 minuti e 18 secondi per arrivare sino a noi, che ne direbbero?

Non si può credere che rimarrebbero stupefatti?
E se ancora consentissimo loro di osservare il pianeta Mercurio, il planeta Venere nelle varie fasi misteriosamente avvolto nella sua coltre di nubi, il rosso pianeta Marte, fratello gemello del la Terra, il pianeta Giove, colosso del sistema planetario con 1 e fasce parallele al suo equatore, coi satelliti ed il mistero della sua macchia rossa, il pianeta Saturno col sistema di anelli e i suoi satelliti......

Se per ultimo poi, in una chiara e calma serata inquadrassimo in condizioni felici la nostra luna, quel pallido disco che illumind pure le lontane notti della loro esistenza, dajrimi vagiti fí no all'ultimo respiro e dicessimo: - Guardate, guardate cosa c!è nel suo disco argenteol - Che ne dixebbero?

Forse tali visioni ii farebbero restare attoniti, quasi spaventati, ma ringrazierebbero il cielo e noi di aver offerto ai loro occhi le più deliziose visioni nel più onesto e piacevole dei trattenimenti.

FENOMENI CELESTI DURANTE IL MESE DI DICEMBRE 1954 (a cura di C.Recla)

PIANETI

MERCURIO - Durante il mese è visibile, al mattino, basso nei primi giorni del mese, il giorno 9 a Nord di Antares, il giorno 25 a 13 h in congiunzione superiore con il sole (-10 36') ; a meta mese dista dalla terra 214 milioni $\mathrm{Km} . \cdot \mathrm{e}$ si va allontanando.
VENERE - Molto splendida al mattino sorge 3 h prima del sole, il giorno 4 ad 11 h diviene stazionaria, indi prosegue con moto diretto in direzione della costellazione Libra. Il giorno 16 ad 1 h in congiunzione con Saturno ($+0^{0}$ 391) il giorno 21 raggiunge il massimo splendore $(-4,4 m)$, ii 21 ad 20 h 46 m in congiunzione con la luna ($+7^{\circ} 20!$).Le sue fasi : il giorno 7, 0.13, il giorno 273 0.31.A metà mese si trova a 56 milioni di km . dalla terra e si và allontanando.

MARTE - Marte si trova nell'Acquaxio \Leftrightarrow tramonta dopo le $22 h$, il giorno 2 a 17 h 20 m in comgiunzione con la luna $\left(-5^{\circ} 59!\right)$, il 31 a 12 h 404 ancora in congiunzione con la luna ($-6^{\circ} 16^{1}$), a metà mese si trova a 195 mi lioni di Km . dalla terra e si vè da essa allontanaño.
GIOVE - E' visibile quasi tutta la notte sorgendo sulle 19-20 prima nella costellazione del Cancro, poi in quella dei Gemelli, nella quale si muove in moto retrogrado. Il giorno 12 a 22 h 44 m in congiunzione con la luna ($+2^{\circ}$ 31!) . Dista dalla terra, a metà mese, 660 rilio ni di Km . avvicinandosi poi ulteriormente.

SATURNO - Visibile al mattino, all'alba nella Libra, il giorno 16. a 1 h in congiunzione con Venere ($-0^{\circ} 39^{1}$), il 21 alle 16 h 30 m In congiunzione con la luna ($+6^{\circ}$ 16!). A metà mese dista dalla terra 1954 milioni di $\mathrm{Km} .$, in di prosegue in lento avvicinamento.
URANO - Sorge all'inizio mese verso le 20 h ed alle 18 h verso fine mese, si trova coi Gemelli in moto retrugrado il giorno 12 a 19 h 37 m in congiunzione con la luna $\left(+2^{\circ}\right.$ 34'). Dista dalla terra il 15 del mese 2668 milioni di $\mathrm{Km} .$, e si avvicina lentamente.
NETTUNO - Sorge verso le 3 h i primi del mese nella costellazio ne della Vergine con moto diretto, il giorno 20 a $2 h$ 14 m in congiunzione con la luna ($+6^{\circ} 57$!). A metà mese si trova a 4620 Km . dalla terra, distanza che và riducendo impercettibilmente.

FASI IUNARI

Primo Quarto	il	3	a	10h	56 m
Iuna Piena	il	10	a	1 h	56 m
Ultimo Quarto	il	17	a	3 h	21 m
Inna Nuova	il	25	a	8 h	33 m

La Iuna si trova ella massima distanza dalla terra il 25 a 8 h 3 m ed alla massima vicinanza dalla terra il 21 a 10 h .

DAI工ERIVISTE (a cura di C. Recla)

Iuminosità di Plutone.

All'Osservatorio di Lowell, il Dr. Robert Hardie ha intrapresa la fotometria fotoelettrica di oggetti deboli col riflettore da 20 pollici. Tra i suoi risultati vi è quello di una nuova determinazione della magnitudine di Plutone che in base a misure offettuate in tre notti, e precisamente il 5-7 maggio 1954 è risultata in 14,5. Questo valore e stato ottenuto col metodo Johnson - Morgan ed è riferito alla luce gialla, avvicinandosi esso così molto alla magnitudine vieúale.

Altre osservazioni della stella variabile $R V$ Lyncis, mostrano che il telescopio da 20 pollici dell'Osservatorio predetto può essere impiegato in misurazioni fotoelettriche di stelle la cui magnitudine nella luce bleu arriva al valore 16,2 .
(Sky and Telescope - Novembre 1954).
Vi sono nuvole di $\mathrm{H}_{2} \mathrm{O}$ su Venere?
Negli ultimi anni gli astronomi hanno considerato seriamente la possibilita che le nubi, che velano la superficie del pianeta Venere, consistano in polvere piuttosto che acqua o qualche altra forma di vapore. Tuttavia lipotesi della polvere è incompatibile con le misure di polarizzazione della luce di Venere, eseguite da B. Iyot, e queste misure convengono invece al comportamento della luce dispersa da nubi di goccioline dacqua. Misure recenti della temperatura del pianeta eseguite da William Sinton, indicano un valore quasi costante di giorno e di notte di-320.C per la superficie visibile delle nubi.

A questa bassa temperatura, l'atmosfera di Venere, oltre lo strato delle nabi, puo contenere vapore acqueo in piccolissima quantità;cosicchè, la mancanza delle bande di vapor acqueo nello spettro di Venere, non pud appoggiare un argomento contro le nubi stesse composte di $\mathrm{H}_{2} \mathrm{O}$.

All'Osservatorio di Harward il dr. Bonald H. Menzel e Fred I: Whipple, ammettono che la superficie di Venere possa essere coperm ta da acqua e che le sue nubi siano composte della stessa sostanza (liquida o gelata). I'atmosfera di Venere consiste in gran parte di biossido di carbonio, il quale non potrebbe esistere su un pianeta simile alla terra con continenti rilevati.
H.C. Urey ha mostrato che il CO_{2} può essere fissate nelle roc ce , sotto forma di carbonati, nelle sue reazioni chimiche coi sí licati, soltanto in presenza di acqua. Ma se la superficie di Venere è completamente ricoperta d'acqua, la fissazicne di CO_{2} non po trebbe continuare dopo la formazione di un sottile strato repulsivo di carbonati e la sua atmosfera potrebbe rimanere largamente costituita da biossido di carbonio sostenente nubi di vapor acqueo.

ATMIVITA' DEL CIRCOLO

Anche il mese di novembre è stato poco favorevole alle osservazioni: un denso strato di buni ha quasi costantemente nascosto il cielo ai curiosi sguardi degli astrofili. Ed è stato un vero peccato che la sera di mercoledi 3, per la quale il geom. C. Recla aveva invitato un numeroso gruppo di aderenti e simpatiz zanti ad osservare la luna con i suoi strumenti, sia stata del tutto proibitiva per qualunque osservazione. Invano è stata attesa qualche schiarita, per cui il geom. Recla ha deciso di far pas sere la serata mostrando ed illustrando la magnifica serie dei suoi strumenti, per la maggior parte da lui stesso costruiti. I convenuti hanno cosi potuto ammirare un bellissimo. Brachyt di 20 cm . di diametro e 4 metri di focale, un magnifico cannocchiale binocu lare Zeias, un bel rifrattore da $80 \mathrm{~m} / \mathrm{m}$., altri Brachyt di ming ri dimensioni tutti in montatura parallattica, astrografi grandi e piccoli (magnifiche le fotografie ottenute)... mancava soltan te un pol di cielo sereno.

Intanto si nota con piacere il sempre maggior interesse dei gicvani alle conversazioni sui più svariati argomenti che si svol gon durante le serate di riunione. Il sig. Giacomo Fiocco, infatti, ha tenuto, la sera del 17, una dotta discussione sul pro blema della diffusione della vita nell'universo, citando i pareri di molti astronomi e pensatori antichi e moderni di chiara fama.

II Dott. Och, durante un'altra riunione, ha auspicato che anche gli astrofili veronesi si applichino all'autncostruzinne dei propri istrumenti, attività che 1 colleghi stranieri praticano larga mente.

Non è poi tanto difficile - ha affermato - costruirsi con minima spesa un telescopio di media potenza, dai 15 ai 25 cm . di diametro, che possa raggiungere i 3,4 ed anche 500 ingrandimenti.

Basta un pol di buona volontà......" E, a ouffragio del suo dire, ha presentato uno specchio parabolico di 17 cm . di diametro di cui aveva appena terminata la lavorazione e che, alla pro va di Foucault, ha dato ottimi risultati.

Per ultimo, non possiamo passare sotto silenzio le numerose lettere di plauso per il nostro Notiziario che somu pervenute in questi ultimi tempi alla Redazione.

$$
\text { b. } 0 \text {. }
$$

\qquad

Tutti gli astrofili. possono collaborare a questo notiziario con scritti, con risultati di osservazioni eseguite e con comunicazioni riguardanti fenomeni celesti osservati.

Per adesioni e comunicazioni rivolgersi:

- "CIRCOLO ASTROFILI VERONESI" - Via Monte Ortigara, 4 - Verona -

